DETERMINATION OF THE UNKNOWN PARAMETERS

OF AN OIL-BEARING STRATUM IN THE PRESENCE
OF RETURN FLOWS THROUGH A WEAKLY PERMEABLE
STRATUM AND INFILTRATION

I. B. Basovich UDC 532.546

The article discusses the inverse problem for a parabolic equation describing filtration in
the presence of return flows through a weakly permeable stratum and infiltration. It dis-
cusses a system of redefined boundary conditions, uniguely determining the unknown func-
tions entering into the filtration equation.

In [1] the inverse problem of the theory of filtration was discussed for the simplest model of flow in
a pressurized stratum.

The unknown permeability coefficient was determined from the given pressure and the output of a
central well. The solution was obtained by methods developed in [2-4].

In the present article, the inverse problem is solved for a more complex filtration model, taking ac-
count of return flows through a weakly permeable layer and of infiltration.

Let us consider a circular stratum of radius R and a central well with the radius ry. W2 shall as-
sume the filtration parameters of the stratum to be radially symmetrical. In the presence of return flows
through an underlying layer, the equation for the pressure has the form (the coefficient of the elastic ca-
pacity, for simplicity, is taken equal to unity) [5]
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Here k(r) is the permeability coefficient of the main stratum; the function hir) is inversely propor-
tional to the thickness of the underlying weakly permeable layer.

The inverse problem for Eq. (1) consists in determining the unknowns qg{t) and h{r) from certain in-
formation on the solution p(r, t).

Let us consider a redefined system of boundary conditions [the mass flow rate g(t) and the pres-
sure @(t) in the well will be assumed to be given functions of the time]:
3
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It was shown in [1] that with h(r) =0 the coefficient k(r) is uniquely established from the functions
o(t) and g(t). We shall show that in the present case the condition (2), (3) is sufficient for the single-
valued determination of the functions k(r), h(r). Let us solve Egs. (1), (2). We shall seek the solution in
the form of a series in terms of the eigenfunctions of the operator
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As in [1], after a Laplace transformation with respect to the time, we obtain
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Here py(r), A; are normalized eigenfunctions and eigennumbers of the operator (4).
We shall assume that the functions k(r), hir) satisfy the conditions
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Then the operator (4) has a finite number of negative eigennumbers and, by virtue of the Mercer
theorem, series (5) converges uniformly to [r;, R].

Setting r=ry in (5), we obtain [ = p;~%(ry), the normalized factors of the operator (4)]:
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From the last equality it follows that
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From (6) we can determine the spectral parameters of the operator (4). The eigennumbers Ay are
the poles of the expression ®(—=2)/Q(=2), and the normalized factors are determined by the appropriate
deductions:
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We make the following replacement of variables in Eq. (4) [6]:
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After the replacement, we obtain
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We will call operator (8) an operator corresponding to operator (4) and Eq. (1) with conditions (2), (3).

The eigennumbers pi and the normalized factors By of operator (8) are equal to
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The constants B and 6(0) are determined from the asymptotic formulas for gy and By
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Thus, the system of redefined boundary conditions (2), (3) completely determines the spectral func-
tion of the corresponding operator (8), in accordance with which the operator is uniquely established [2].
As in [1], the function f(x) and the constant ¢'(0) are determined from the solution of the inverse Sturm-—
Liouville problem for the operator (8), with the spectral function [2]

s(w) =D 8¢

U,<Uah

Let us consider the case where one of the functions k(r) or h(r) is known at {r;, Rl.

If h(r) is known, for the y=r?(x), taking account of (7), (9), we can obtain the nonlinear differential
equation:
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The function k{r) is determined in parametric form:
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If the function k(r) is known, then, consequently, the functions r(x), §{x), [{x) are known. Then, going
over from the variable x to r, we find the function h(r);
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If both functions are unknown, the supplementary condition (3) is obviously insufficient for the single-
valued determination of k(r) and h(r). There naturally arises the question of what additional information
with respect to the functions k(r) and h{r) can be obtained by assigning values of the solution p(r, t) not at
the single point r=ry, but at several points ryyy, m=1, 2, ..., N,

It is found that no number of additional functions p(ry,, t) will permit the single-valued determination
of k{r} and h(r).

Before proving this, let us consider the following problem.

Let there be given the redefined system (1)-(3), the value of the function k(r,) at the point r=ry, and
the integral x,(ry) =7B~I(ry).

We shall show that in this case the solution of the direct problem p(r;, t) at the point r=1r; can be
determined for all moments of time.

In actuality, the corresponding operator (8) is determined by conditions (2), {3). Consequently, the
normalized eigenfunctions of the operator (8), zk(x)are known. But then the following values are known:
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Substituting (12) into the series (5) we obtain
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If the functions klry,), I(ry) are known for N points r=vpy, m=1, 2, ..., N, then the values of the
function p(r, 1) are determined for all points Tm-

Specifically, if the function k(r) is known in the segment [r', r''], the integral I{r" is known, and the
functions ¢(t) and q(t) are known, then the solution of the direct problem (1), (2) is uniquely determined in
the half-band {r'=r=1r", t>0}, and does not depend on the values of k(r), h{r) outside of the interval [r!,
r''], which, generally speakmg, remain indeterminate.

From what has been said it follows that if for the pair of functions {k(r), h(n)}, (1), (2) andthe follow~
ing condition are satisfied:

PTos ) = (t), m=0,1,2, ..., N (12)
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there exists an infinite set of pairs {k*(r), h*(r)} for which (1), (2), and (13) are valid. For this, satisfac-
tion of the conditions is sufficient.

The corresponding operators (8) for the pairs {k(r), h(r)} and {k*(r), h*(r)} coincide.

The following relationships are valid {m=0, 1, 2, ..., N):
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In actuality, every function k(r) satisfying (14) can be varied without breaking down relationships (14),
and maintaining the value of dk/drlr:r constant. For a changed value of 6k(r), the function h(r) is so
chosen that the function f(x) in the operator (8) will remain as before. From the form of f(x), it follows
that this can always be done.

The constant entering into the boundary condition does not change, since the values of kiry), k'(ry)
remain invariable.

Thus, from supplementary information of the type of (13) it is impossible to uniquely determine the
functions k(r) and h(r). However, this can be done if the output and pressure of the well are measured un-
der other operating conditions. With r=ry, let the solution of Eq. (1) be known with two sets of boundary
conditions [p,(r) is some unknown function]:
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We shall show that conditions (15)-(17) uniquely determine the functions k(r), h(r). Analogously to
what has gone before, for the Laplace transforms 4’1,2(5) we obtain
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The second term in the right-hand part of (19) is a result of taking account of the nonnull initial data
under conditions (16).

As has been shown, relationship (18) completely determines the corresponding operator (8). From
(19) we obtain an expression for cy,
¢x = pi (rg) Re shn G(—1)
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We express the coefficients ¢y in terms of the known normalized functions of the corresponding
operator;
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Then the function y(x) is known:
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Taking into consideration that 6 (x) =7y'(x)2B, we obtain an equation for y(x) = r¥(x),

VAvnWn=1@ yO=rs (21)
Solving (21), from formulas (10}, {11), we determine the functions k(r) and h(r).

In the presence of infiltration, the equation for the pressure assumes the form

%:D—z—é——g—r—[rk(r) %p]—h(r)pJ—m(r) (22)

In this case, to uniquely determine the three functions, the pressure py{ry, t) = @4(t) must be given
under some third set of conditions, for example,
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We then have
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The constants ci, wi are the coefficients of the Fourier functions pyir), w(r), respectively, with re-

spect to the system pi{r).

From (24) we obtain a relationship to determine the spectral parameters of the operator {4);
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Relationship (26) determines the corresponding operator (8). Further, using the last equality of (24)
and (25), we obtain
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From (27) we find ci and, consequently, we determine the functions k(r) and h(r).
The coefficients wy are determined from (24) or (25). Then
o(r) = 2 op; (1)
k=1

It is not difficult to point to different forms of the boundary conditions, uniquely determining the func-
tions k(r), h(r), w(r). For example, in condition (23) we can set pglt=; = &p,(r), where o is some constant.

In conclusion, the author thanks P. Ya. Kochin for his continuing interest in the work.
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